Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
X
xv6-public
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
统计图
问题
0
问题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
图像
聊天
创建新问题
作业
提交
问题看板
Open sidebar
银宸时代
OS Lab Group
奖励实验
xv6-public
提交
b364c4b8
提交
b364c4b8
7月 23, 2010
创建
作者:
Frans Kaashoek
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
oops, vm.c
上级
4714c205
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
353 行增加
和
0 行删除
+353
-0
vm.c
vm.c
+353
-0
没有找到文件。
vm.c
0 → 100644
浏览文件 @
b364c4b8
#include "param.h"
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
static
uint
kerntext
;
// linear/physical address of start of kernel text
static
uint
kerntsz
;
static
uint
kerndata
;
static
uint
kerndsz
;
static
uint
kernend
;
static
uint
freesz
;
static
pde_t
*
kpgdir
;
void
printstack
()
{
uint
*
ebp
=
(
uint
*
)
rebp
();
uint
i
;
cprintf
(
"kernel stack: 0x%x
\n
"
,
ebp
);
while
(
ebp
)
{
if
(
ebp
<
(
uint
*
)
kerntext
)
// don't follow user ebp
return
;
cprintf
(
" ebp %x saved ebp %x eip %x args"
,
ebp
,
ebp
[
0
],
ebp
[
1
]);
for
(
i
=
0
;
i
<
4
;
i
++
)
cprintf
(
" %x"
,
ebp
[
2
+
i
]);
cprintf
(
"
\n
"
);
ebp
=
(
uint
*
)
ebp
[
0
];
}
}
void
printpgdir
(
pde_t
*
pgdir
)
{
uint
i
;
uint
j
;
cprintf
(
"printpgdir 0x%x
\n
"
,
pgdir
);
for
(
i
=
0
;
i
<
NPDENTRIES
;
i
++
)
{
if
(
pgdir
[
i
]
!=
0
&&
i
<
100
)
{
cprintf
(
"pgdir %d, v=0x%x
\n
"
,
i
,
pgdir
[
i
]);
pte_t
*
pgtab
=
(
pte_t
*
)
PTE_ADDR
(
pgdir
[
i
]);
for
(
j
=
0
;
j
<
NPTENTRIES
;
j
++
)
{
if
(
pgtab
[
j
]
!=
0
)
cprintf
(
"pgtab %d, v=0x%x, addr=0x%x
\n
"
,
j
,
PGADDR
(
i
,
j
,
0
),
PTE_ADDR
(
pgtab
[
j
]));
}
}
}
cprintf
(
"printpgdir done
\n
"
,
pgdir
);
}
static
pte_t
*
walkpgdir
(
pde_t
*
pgdir
,
const
void
*
va
,
int
create
)
{
uint
r
;
pde_t
*
pde
;
pte_t
*
pgtab
;
pde
=
&
pgdir
[
PDX
(
va
)];
if
(
*
pde
&
PTE_P
)
{
pgtab
=
(
pte_t
*
)
PTE_ADDR
(
*
pde
);
}
else
if
(
!
create
||
!
(
r
=
(
uint
)
kalloc
(
PGSIZE
)))
return
0
;
else
{
pgtab
=
(
pte_t
*
)
r
;
// Make sure all those PTE_P bits are zero.
memset
(
pgtab
,
0
,
PGSIZE
);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
*
pde
=
PADDR
(
r
)
|
PTE_P
|
PTE_W
|
PTE_U
;
}
return
&
pgtab
[
PTX
(
va
)];
}
static
int
mappages
(
pde_t
*
pgdir
,
void
*
la
,
uint
size
,
uint
pa
,
int
perm
,
int
p
)
{
uint
i
;
pte_t
*
pte
;
if
(
p
)
cprintf
(
"mappages: pgdir 0x%x la 0x%x sz %d(0x%x) pa 0x%x, perm 0x%x
\n
"
,
pgdir
,
la
,
size
,
size
,
pa
,
perm
);
for
(
i
=
0
;
i
<
size
;
i
+=
PGSIZE
)
{
if
(
!
(
pte
=
walkpgdir
(
pgdir
,
(
void
*
)(
la
+
i
),
1
)))
return
0
;
*
pte
=
(
pa
+
i
)
|
perm
|
PTE_P
;
if
(
p
)
cprintf
(
"mappages 0x%x 0x%x pp %d
\n
"
,
la
+
i
,
*
pte
,
PPN
(
*
pte
));
}
return
1
;
}
// Set up CPU's kernel segment descriptors.
// Run once at boot time on each CPU.
void
ksegment
(
void
)
{
struct
cpu
*
c
;
// Map once virtual addresses to linear addresses using identity map
c
=
&
cpus
[
cpunum
()];
c
->
gdt
[
SEG_KCODE
]
=
SEG
(
STA_X
|
STA_R
,
0
,
0xffffffff
,
0
);
c
->
gdt
[
SEG_KDATA
]
=
SEG
(
STA_W
,
0
,
0xffffffff
,
0
);
c
->
gdt
[
SEG_UCODE
]
=
SEG
(
STA_X
|
STA_R
,
0x0
,
0xffffffff
,
DPL_USER
);
c
->
gdt
[
SEG_UDATA
]
=
SEG
(
STA_W
,
0x0
,
0xffffffff
,
DPL_USER
);
// map cpu, and curproc
c
->
gdt
[
SEG_KCPU
]
=
SEG
(
STA_W
,
&
c
->
cpu
,
8
,
0
);
lgdt
(
c
->
gdt
,
sizeof
(
c
->
gdt
));
loadgs
(
SEG_KCPU
<<
3
);
// Initialize cpu-local storage.
cpu
=
c
;
proc
=
0
;
}
// Setup address space and current process task state.
void
loadvm
(
struct
proc
*
p
)
{
pushcli
();
// Setup TSS
cpu
->
gdt
[
SEG_TSS
]
=
SEG16
(
STS_T32A
,
&
cpu
->
ts
,
sizeof
(
cpu
->
ts
)
-
1
,
0
);
cpu
->
gdt
[
SEG_TSS
].
s
=
0
;
cpu
->
ts
.
ss0
=
SEG_KDATA
<<
3
;
cpu
->
ts
.
esp0
=
(
uint
)
proc
->
kstack
+
KSTACKSIZE
;
ltr
(
SEG_TSS
<<
3
);
if
(
p
->
pgdir
==
0
)
panic
(
"loadvm: no pgdir
\n
"
);
lcr3
(
PADDR
(
p
->
pgdir
));
// switch to new address space
popcli
();
// Conservatively flush other processor's TLBs (XXX lazy--just 2 cpus)
if
(
cpu
->
id
==
0
)
lapic_tlbflush
(
1
);
else
lapic_tlbflush
(
0
);
}
// Setup kernel part of page table. Linear adresses map one-to-one on
// physical addresses.
pde_t
*
setupkvm
(
void
)
{
pde_t
*
pgdir
;
// Allocate page directory
if
(
!
(
pgdir
=
(
pde_t
*
)
kalloc
(
PGSIZE
)))
return
0
;
memset
(
pgdir
,
0
,
PGSIZE
);
// Map IO space from 640K to 1Mbyte
if
(
!
mappages
(
pgdir
,
(
void
*
)
0xA0000
,
0x60000
,
0xA0000
,
PTE_W
,
0
))
return
0
;
// Map kernel text from kern text addr read-only
if
(
!
mappages
(
pgdir
,
(
void
*
)
kerntext
,
kerntsz
,
kerntext
,
0
,
0
))
return
0
;
// Map kernel data form kern data addr R/W
if
(
!
mappages
(
pgdir
,
(
void
*
)
kerndata
,
kerndsz
,
kerndata
,
PTE_W
,
0
))
return
0
;
// Map dynamically-allocated memory read/write (kernel stacks, user mem)
if
(
!
mappages
(
pgdir
,
(
void
*
)
kernend
,
freesz
,
PADDR
(
kernend
),
PTE_W
,
0
))
return
0
;
// Map devices such as ioapic, lapic, ...
if
(
!
mappages
(
pgdir
,
(
void
*
)
0xFE000000
,
0x2000000
,
0xFE000000
,
PTE_W
,
0
))
return
0
;
return
pgdir
;
}
char
*
uva2ka
(
pde_t
*
pgdir
,
char
*
uva
)
{
pte_t
*
pte
=
walkpgdir
(
pgdir
,
uva
,
0
);
if
(
pte
==
0
)
return
0
;
uint
pa
=
PTE_ADDR
(
*
pte
);
return
(
char
*
)
pa
;
}
int
allocuvm
(
pde_t
*
pgdir
,
char
*
addr
,
uint
sz
)
{
uint
i
,
n
;
char
*
mem
;
n
=
PGROUNDUP
(
sz
);
if
(
addr
+
n
>=
0xA0000
)
return
0
;
for
(
i
=
0
;
i
<
n
;
i
+=
PGSIZE
)
{
if
(
!
(
mem
=
kalloc
(
PGSIZE
)))
{
// XXX cleanup what we did?
return
0
;
}
memset
(
mem
,
0
,
PGSIZE
);
mappages
(
pgdir
,
addr
+
i
,
PGSIZE
,
PADDR
(
mem
),
PTE_W
|
PTE_U
,
0
);
}
return
1
;
}
void
freevm
(
pde_t
*
pgdir
)
{
uint
i
,
j
,
da
;
if
(
!
pgdir
)
panic
(
"freevm: no pgdir
\n
"
);
for
(
i
=
0
;
i
<
NPDENTRIES
;
i
++
)
{
da
=
PTE_ADDR
(
pgdir
[
i
]);
if
(
da
!=
0
)
{
pte_t
*
pgtab
=
(
pte_t
*
)
da
;
for
(
j
=
0
;
j
<
NPTENTRIES
;
j
++
)
{
if
(
pgtab
[
j
]
!=
0
)
{
uint
pa
=
PTE_ADDR
(
pgtab
[
j
]);
uint
va
=
PGADDR
(
i
,
j
,
0
);
if
(
va
>=
0xA0000
)
// done with user part?
break
;
kfree
((
void
*
)
pa
,
PGSIZE
);
pgtab
[
j
]
=
0
;
}
}
kfree
((
void
*
)
da
,
PGSIZE
);
pgdir
[
i
]
=
0
;
}
}
kfree
((
void
*
)
pgdir
,
PGSIZE
);
}
int
loaduvm
(
pde_t
*
pgdir
,
char
*
addr
,
struct
inode
*
ip
,
uint
offset
,
uint
sz
)
{
uint
i
,
pa
,
n
;
pte_t
*
pte
;
if
((
uint
)
addr
%
PGSIZE
!=
0
)
panic
(
"loaduvm: addr must be page aligned
\n
"
);
for
(
i
=
0
;
i
<
sz
;
i
+=
PGSIZE
)
{
if
(
!
(
pte
=
walkpgdir
(
pgdir
,
addr
+
i
,
0
)))
panic
(
"loaduvm: address should exist
\n
"
);
pa
=
PTE_ADDR
(
*
pte
);
if
(
sz
-
i
<
PGSIZE
)
n
=
sz
-
i
;
else
n
=
PGSIZE
;
if
(
readi
(
ip
,
(
char
*
)
pa
,
offset
+
i
,
n
)
!=
n
)
return
0
;
}
return
1
;
}
void
inituvm
(
pde_t
*
pgdir
,
char
*
addr
,
char
*
init
,
uint
sz
)
{
uint
i
,
pa
,
n
,
off
;
pte_t
*
pte
;
for
(
i
=
0
;
i
<
sz
;
i
+=
PGSIZE
)
{
if
(
!
(
pte
=
walkpgdir
(
pgdir
,
(
void
*
)(
i
+
addr
),
0
)))
panic
(
"inituvm: pte should exist
\n
"
);
off
=
(
i
+
(
uint
)
addr
)
%
PGSIZE
;
pa
=
PTE_ADDR
(
*
pte
);
if
(
sz
-
i
<
PGSIZE
)
n
=
sz
-
i
;
else
n
=
PGSIZE
;
memmove
((
char
*
)
pa
+
off
,
init
+
i
,
n
);
}
}
pde_t
*
copyuvm
(
pde_t
*
pgdir
,
uint
sz
)
{
pde_t
*
d
=
setupkvm
();
pte_t
*
pte
;
uint
pa
,
i
;
char
*
mem
;
if
(
!
d
)
return
0
;
for
(
i
=
0
;
i
<
sz
;
i
+=
PGSIZE
)
{
if
(
!
(
pte
=
walkpgdir
(
pgdir
,
(
void
*
)
i
,
0
)))
panic
(
"copyuvm: pte should exist
\n
"
);
pa
=
PTE_ADDR
(
*
pte
);
if
(
!
(
mem
=
kalloc
(
PGSIZE
)))
return
0
;
memmove
(
mem
,
(
char
*
)
pa
,
PGSIZE
);
if
(
!
mappages
(
d
,
(
void
*
)
i
,
PGSIZE
,
PADDR
(
mem
),
PTE_W
|
PTE_U
,
0
))
return
0
;
}
return
d
;
}
void
pminit
(
void
)
{
extern
char
end
[];
struct
proghdr
*
ph
;
struct
elfhdr
*
elf
=
(
struct
elfhdr
*
)
0x10000
;
// scratch space
if
(
elf
->
magic
!=
ELF_MAGIC
||
elf
->
phnum
!=
2
)
panic
(
"pminit: need a text and data segment
\n
"
);
ph
=
(
struct
proghdr
*
)((
uchar
*
)
elf
+
elf
->
phoff
);
kernend
=
((
uint
)
end
+
PGSIZE
)
&
~
(
PGSIZE
-
1
);
kerntext
=
ph
[
0
].
va
;
kerndata
=
ph
[
1
].
va
;
kerntsz
=
kerndata
-
kerntext
;
kerndsz
=
kernend
-
kerndata
;
freesz
=
0x300000
-
kernend
;
// XXX no more than 3 Mbyte of phys mem
cprintf
(
"kerntext@0x%x(sz=0x%x), kerndata@0x%x(sz=0x%x), kernend 0x%x freesz = 0x%x
\n
"
,
kerntext
,
kerntsz
,
kerndata
,
kerndsz
,
kernend
,
freesz
);
kinit
((
char
*
)
kernend
,
freesz
);
// XXX should be called once on bootcpu
}
// Jump to mainc on a properly-allocated kernel stack
void
jkstack
(
void
)
{
char
*
kstack
=
kalloc
(
PGSIZE
);
if
(
!
kstack
)
panic
(
"jkstack
\n
"
);
char
*
top
=
kstack
+
PGSIZE
;
jstack
((
uint
)
top
);
}
// Allocate one page table for the machine for the kernel address space
void
kvmalloc
(
void
)
{
kpgdir
=
setupkvm
();
}
// Switch to the kernel page table (used by the scheduler)
void
loadkvm
(
void
)
{
lcr3
(
PADDR
(
kpgdir
));
}
void
vminit
(
void
)
{
uint
cr0
;
loadkvm
();
// Turn on paging.
cr0
=
rcr0
();
cr0
|=
CR0_PE
|
CR0_PG
|
CR0_AM
|
CR0_WP
|
CR0_NE
|
CR0_TS
|
CR0_EM
|
CR0_MP
;
cr0
&=
~
(
CR0_TS
|
CR0_EM
);
lcr0
(
cr0
);
}
编写
预览
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论